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Success in AI 



Clinically Applicable AI – Early 
Warning Systems
Continuous warning systems, to identify patients at risk 
early and reduce mortality, morbidity, length of  stay, …  

Henry, Katharine E., et al. "A targeted real-time early warning score (TREWScore) for septic shock." Science translational medicine (2015) P. 
Schwab, A. Mehrjou, S. Prabhoo, L. A. Celi, J. Hetzel, M. Hofer, B. Schölkopf, S. Bauer “Real-time Prediction of  COVID-19 related 
Mortality using Electronic Health Records” Nature Communications (2020). 
Jiang, L.Y., Liu, X.C., Nejatian, N.P. et al. Health system-scale language models are all-purpose prediction engines. Nature (2023).



Intelligent Machines that Generalize

https://real-robot-challenge.com/

Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." International Conference on Machine Learning.  2021.
Ahmed, Ossama, et al. "Causalworld: A robotic manipulation benchmark for causal structure and transfer learning." arXiv preprint arXiv:2010.04296 (2020).
Bauer, Stefan, et al. "Real Robot Challenge: A Robotics Competition in the Cloud." NeurIPS 2021 Competitions and Demonstrations Track. PMLR, 2022.

https://real-robot-challenge.com/


Image from: Messerli, F. H., et al. "Chocolate and Your Health." N Engl J 
Med 367.16 (2012): 1562-4.

Causal Structure Learning  - A Quick Primer 



Image from: Messerli, F. H., et al. "Chocolate and Your Health." N Engl J 
Med 367.16 (2012): 1562-4.

● In low dimensions we can 
often differentiate between 
correlation and causation using 
domain knowledge

● Sweden seems to be an outlier. 
● Swiss chocolate seems to be 

better German. 

Causal question: What is the best 
prediction for #Nobel L. given 
chocolate consumption is set to 100?

Causal Structure Learning  - A Quick Primer in 2 slides! 



Messerli F.H., et al. "Chocolate and Your Health." N Engl J Med  (2012) Golomb B.A., et al. “Chocolate habits of Nobel prizewinners.” Nature (2013)

Causal Structure Learning  - A Quick Primer 



https://chat.openai.com



Hariton, Eduardo, and Joseph J. Locascio. "Randomised controlled trials—the gold standard for effectiveness research." BJOG: an international journal of 
obstetrics and gynaecology (2018).



You have a big data scenario where 
you measure thousands of  variables X. 

Examples: 

Predictive ML: Use X to predict Y 
e.g. how well can we predict if  customers 
churn / a patient needs to be transferred to  
ICU? 

Causal ML: What is the effect of  a 
particular variable D (one element of  
X) on Y? If  we perform intervention on D, 
would the customer not churn / be able to 
leave the ICU? 

Prediction vs Causation  

What happens if  additionally we have more 
variables than observations? What if  we know 
there are more variables than we can measure?  
What happens if  we are interested in Z or T and 
not D and Y? … 



Image from: Messerli, F. H., et al. "Chocolate and Your Health." N Engl J 
Med 367.16 (2012): 1562-4.

Key problem - Many SCMs generate 
same distribution:  

Causal Structure Learning  - A Quick Primer in 2 slides! 

How we can learn the underlying causal model 
from data if  we do not know it a priori - at 
scale and with few interventions! 



Causal Structure Learning 

"I would rather discover one causal law 
than be King of  Persia." 
- Democritus, ~400 BC.

Image: https://en.wikipedia.org/wiki/Democritus

https://icml.cc/virtual/2022/tutorial/18442

# of Nodes # of DAGs # of Graphs

1 1 1

2 3 22

3 25 26

4 543 212

5 29281 220

6 3781503 230

7 1138779265 242

8 783702329343 256

9 1213442454842881 272

10 4175098976430598143 290

Goal:  Learn a causal graph from data

Approaches:

● Constraint based
● Score based 
● Restricted SCM

How to search efficiently? 



What to do with a DAG? 

How we can learn the underlying causal model 
from data if  we do not know it a priori - at 
scale and with few interventions! 

● Cause-Effect Estimation 

● Imputation (of  missing but not 
randomly missing data) 

● Experimental Design 

○ Where we intervene matters!  

○ Interventions are expensive

○ Some interventions might be 
impossible or unethical. 

Geffner, Tomas, et al. "Deep end-to-end causal inference." arXiv preprint arXiv:2202.02195 (2022).
Sharma, Amit, and Emre Kiciman. "DoWhy: An end-to-end library for causal inference." arXiv preprint arXiv:2011.04216 (2020).



1. Restrictive Assumptions on the functional nature of the data

2. Interventional Data

MEC

i-MEC
G*

Space of DAGs

MEC    = Markov Equivalence Class
i-MEC = Interventional Markov Equivalence Class
G*        = Ground Truth Graph

Causal Structure Learning 



Jamie Robbins: “before you can pull a rabbit out of  a hat, you have 
to put the rabbit in.”*

*Recent Interviews with Heckman, Rubin, Pearl and Robbins in Journal of  Observational Studies https://muse.jhu.edu/issue/48885

Scheines, Richard. "An introduction to causal inference." (1997).
Glymour, Clark, Kun Zhang, and Peter Spirtes. "Review of causal discovery methods based on graphical models." Frontiers in genetics (2019).

The ultimate goal of our collaboration was to develop discovery algorithms 
much more powerful than the FCI algorithm, the then and now current state of 
the art. The FCI algorithm is based on the assumption that observed data 
were generated by an unknown causal graph (that may include unmeasured 
(i.e. hidden) common causes of the observed variables) that satisfies the 
following faithfulness assumption: all conditional and unconditional 
independencies in the observed data joint distribution are due to causal 
structure, i.e. to missing arrows on the underlying causal graph. 

We have gone from complete ignorance of the gene network to complete 
knowledge seemingly by magic. How is this possible? At this point in my talk, 
having pulled the Nobel rabbit out of the hat, I tell the audience I will explain the 
trick and show them how I used the generalized faithfulness assumption to 
place the rabbit in the hat. 

https://muse.jhu.edu/issue/48885


Bayesian Learning of  Causal Graphs

•In order to do very few experiments, we need to plan interventions 
and select the most informative ones.

•One possible / popular answer: Get uncertainty quantification over 
causal structures learned from purely observational data.

•Then use this to efficiently design (fewer) experiments.

•Requires Bayesian Learning of  causal graphs.

Bayesian Learning of  Causal Graphs is a much harder problem (than 
just inferring one graph)! 



Bayesian Learning of  Causal Graphs 
DAG - Bootstrap MCMC Variational 

N. Friedman, M. Goldszmidt, and A. J. Wyner. Data analysis with 
Bayesian networks: A bootstrap approach. UAI 1999.

D. Heckerman, C. Meek, and G. Cooper. A Bayesian approach 
to causal discovery. Technical report, 1997

Annadani et al. "Variational causal networks: Approximate 
bayesian inference over causal structures." arXiv (2021).

Lorch,  et al. "Dibs: Differentiable bayesian structure learning."  
NeurIPS (2021)

● Penalty that promotes 
sparsity of  the graphs 
(simpler hypotheses) 
but also DAGness

● How to define var. 
approximation

● Frequentist
● Bootstrap samples and 

obtain graphs from any 
causal discovery alg. 

● Estimate is normalised 
frequency count of  
bootstrapped graphs 

● Does not have full 
support 

● Assume conjugate 
prior over parameters

● Obtain unnormalized 
posterior by 
marginalising over 
parameters

● Can sample from the 
posterior using MCMC 

● Need graph search 
heuristics

● Slow mixing and 
convergence 



Bayesian Optimal Experimental Design for Causal Discovery

Bayesian Optimal Experimental Design 
framework to identify where to intervene to 
quickly identify the causal structure

exp
erim

ent

latent cau
ses

o
u

tco
m

es

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals of Mathematical Statistics, pages 986–1005, 1956.
Chaloner, Kathryn, and Isabella Verdinelli. "Bayesian experimental design: A review." Statistical science (1995). 

Problem: How to solve the optimization problem and select intervention node (j, 
discrete) and value (v, continuous)? 



Bayesian Optimal Experimental Design 

Tigas, Panagiotis, Annadani, Yashas  et al. "Interventions, where and how? experimental design for causal models at scale."  NeurIPS (2022)
Houlsby, Neil, et al. "Bayesian active learning for classification and preference learning." arXiv preprint arXiv:1112.5745 (2011).



Results on synthetic graphs



Results on In Silico dataset DREAM



GeneDisco - A Benchmark & Community Challenge for 
Experimental Design in Drug Discovery

Task 1 - Maximize target discovery rate: Selecting 
gene targets for interventional experiments in 
order to maximize the discovery rate of  interesting 
targets (“target discovery rate”).

Task 2 – Maximize model performance: Selecting 
gene targets for interventional experiments in 
order to maximize the performance of  a 
machine-learning model trained on the data 
selected.

A. Mehrjou, A. Soleymani, P. Notin, A. Jesson, Y. Gal, S. Bauer and P. Schwab:  „GeneDisco: A 
Real World Experimental Design Benchmark for Batch Active Learning for Drug Discovery“. 
International Conference on Learning Representations (2022).



Design for Batched Experiments (Clean Data) 

Houlsby, Neil, et al. "Bayesian active learning for classification and preference learning." arXiv preprint arXiv:1112.5745 (2011).
Kirsch, A. et al. "Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning." NeurIPS (2019).
Mehrjou, A.  et al. „GeneDisco: A Real World Experimental Design Benchmark for Batch Active Learning for Drug Discovery“. ICLR (2022).



Design for Batched Experiments (Real World) 

Houlsby, Neil, et al. "Bayesian active learning for classification and preference learning." arXiv preprint arXiv:1112.5745 (2011).
Kirsch, A. et al. "Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning." NeurIPS (2019).
Mehrjou, A.  et al. „GeneDisco: A Real World Experimental Design Benchmark for Batch Active Learning for Drug Discovery“. ICLR (2022).



Potential Future: Interactive Learning for Personalized Therapies 

Ji, Yuge, et al. "Machine learning for perturbational single-cell omics." Cell Systems  (2021). 
Kornauth, Christoph, et al. "Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematological Cancers and Identifies Exceptional Responders." Cancer 
discovery (2021).



Causality, Deep Learning and Generalization 
Incorrect Knowledge Factorization leads to 
poor Transfer! 

● Right factorization of  joint distribution 
leads to fast adaptation to new problem

● With the wrong factorization a change in 
P(cause) influences all modules and all 
modules need to be adapted! 

Bengio et al. “A Meta-Transfer Objective for Learning to Disentangled Causal Mechanisms”, 2019. 
Scherrer et al. "Deep Learning for Causality" upcoming , basis for https://icml.cc/virtual/2022/tutorial/18442

Idea: Use the speed of  adaptation as a learning signal to identify the causal model. 



Neural Causal Models 

● Use adaptation rate as score
● Iteratively Functional and Structural Fitting

○ Functional parameters → Conditional 
Relationships

○ Structural parameters → (Soft) Adjacency 
Matrix

● Use neural networks to learn causal 
relationships
○ Continuous optimization
○ Don’t need to iterate through all DAG

R. Ke, O. Bilaniuk, A. Goyal, S. Bauer, H. Larochelle, C. Pal und Y. Bengio. „Learning Neural Causal Models from Unknown Interventions”, arxiv (2020). 
Bengio et al. “A Meta-Transfer Objective for Learning to Disentangled Causal Mechanisms”, 2019. 

Upcoming Review of Neural Causal Models from Nino Scherrer, underlying basis for https://icml.cc/virtual/2022/tutorial/18442



Neural Causal Models for Experimental Design 

● Drop the (optimal) mutual 
information scores 

● Learn the intervention targets 
using gradient information alone! 

● Multiple different gradients 
possible depending on underlying 
NCM.  

Olko, Mateusz, et al. "Trust your∇: Gradient-based intervention targeting for causal discovery." arXiv (2022).



Simplest implementation of  none-optimal approach already 
competitive!   

Olko, Mateusz, et al. "Trust your∇: Gradient-based intervention targeting for causal discovery." arXiv (2022).



https://twitter.com/ManuelKRausch1/status/1518268003258875904 from 
David Hunter  @cyclingmole

Image from: Messerli, F. H., et al. "Chocolate and Your Health." N Engl J 
Med  (2012).

Challenge - What to do with multi-modal data? 

https://docs.google.com/file/d/1Q_csavfcUvWKPf28SJWn4yn8WieBmufm/preview
https://twitter.com/ManuelKRausch1/status/1518268003258875904


Structured Spaces for Materials Discovery - Invar Alloys

Z. Rao, P-Y. Tung, R. Xie, Y. Wei, H. Zhang, A. Ferrari, T. Klaver, F. Körmann, P. Sukumar, A. Kwiatkowski da Silva, Y. Chen, Z. Li, D. Ponge, J. Neugebauer, O. Gutfleisch, S. Bauer 
and D. Raabe. „Machine learning enabled fast high-entropy alloy discovery - a case study on novel INVAR alloys“. Science (2022).



Summary 
● Full causal discovery from observational data is too difficult or requires very 

strong (unreasonable?) assumptions.
● Still hard to evaluate learned causal graphs especially in real-world. 
● Need to evaluate causality wrt. downstream tasks e.g. experimental design 

(rather than just graph recovery metrics). 
● Need inductive biases (e.g. simulations) or interventions for multi-modal 

data. 

st.bauer@tum.de 

mailto:stefan.bauer@helmholtz-munich.de


● Patrick Schwab 
● Arash Mehrjou

● Piotr Milos 
● Łukasz Kuciński
● Mateusz Olko
● Michał Zajaç
● Aleksandra Nowak

● Yashas Annadani 
● Nino Scherrer 

● Yarin Gal 
● Pascal  Notin
● Andrew Jesson
● Desi R. Ivanova
● Panagiotis Tigas 
● Adam Foster

Thank you!
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https://real-robot-challenge.com/
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A. Mehrjou, A. Soleymani, P. Notin, A. Jesson, Y. Gal, S. Bauer and P. Schwab „GeneDisco: A 
Real World Experimental Design Benchmark for Batch Active Learning for Drug Discovery“. 
ICLR (2022). 

N. Scherrer, O. Bilaniuk, Y. Annadani, A. Goyal, P. Schwab, B. Schölkopf, MC. Mozer, Y. Bengio, 
S. Bauer and R. Ke. „Learning Neural Causal Models with Active Interventions“, arXiv (2021).

P. Tigas, Y. Annadani, A. Jesson, B. Schölkopf, Y. Gal und S. Bauer. „Interventions, Where and 
How? Experimental Design for Causal Models at Scale“. NeurIPS (2022). 

O. Mateusz, M. Zajaç, A. Nowak, N. Scherrer, Y. Annadani, S. Bauer, L. Kucinski, P. Milos. 
"Trust your∇: Gradient-based intervention targeting for causal discovery." arXiv (2022).

Y. Annadani, J. Rothfuss, A. Lacoste, N. Scherrer, A. Goyal, Y. Bengio und S. Bauer. „Variational 
Causal Networks: Approximate Bayesian Inference over Causal Structures“, arXiv (2021).

T. Deleu, A. Góis, C. Emezue, M. Rankawat, S. Lacoste-Julien, S. Bauer and Y. Bengio. „Bayesian 
Structure Learning with Generative Flow Networks“.  UAI (2022).

http://www.disentanglement-challenge.com/
https://real-robot-challenge.com/
https://github.com/rr-learning/
http://mlss.tuebingen.mpg.de/2020/index.html

